KRAN: Knowledge Refining Attention Network for Recommendation

Author:

Zhang Zhenyu1,Zhang Lei2,Yang Dingqi3,Yang Liu2

Affiliation:

1. Tianjin University, Beijing Dahua Electronic Instrument LLC, Tianjin, China

2. Tianjin University, Tianjin, China

3. University of Macau, Macao SAR, China

Abstract

Recommender algorithms combining knowledge graph and graph convolutional network are becoming more and more popular recently. Specifically, attributes describing the items to be recommended are often used as additional information. These attributes along with items are highly interconnected, intrinsically forming a Knowledge Graph (KG). These algorithms use KGs as an auxiliary data source to alleviate the negative impact of data sparsity. However, these graph convolutional network based algorithms do not distinguish the importance of different neighbors of entities in the KG, and according to Pareto’s principle, the important neighbors only account for a small proportion. These traditional algorithms can not fully mine the useful information in the KG. To fully release the power of KGs for building recommender systems, we propose in this article KRAN, a Knowledge Refining Attention Network, which can subtly capture the characteristics of the KG and thus boost recommendation performance. We first introduce a traditional attention mechanism into the KG processing, making the knowledge extraction more targeted, and then propose a refining mechanism to improve the traditional attention mechanism to extract the knowledge in the KG more effectively. More precisely, KRAN is designed to use our proposed knowledge-refining attention mechanism to aggregate and obtain the representations of the entities (both attributes and items) in the KG. Our knowledge-refining attention mechanism first measures the relevance between an entity and it’s neighbors in the KG by attention coefficients, and then further refines the attention coefficients using a “richer-get-richer” principle, in order to focus on highly relevant neighbors while eliminating less relevant neighbors for noise reduction. In addition, for the item cold start problem, we propose KRAN-CD, a variant of KRAN, which further incorporates pre-trained KG embeddings to handle cold start items. Experiments show that KRAN and KRAN-CD consistently outperform state-of-the-art baselines across different settings.

Funder

NSFC

Tianjin Science and Technology Plan Project

Open Research Fund of the Public Security Behavioral Science Laboratory, People’s Public Security University of China

University of Macau

FDCT Macau SAR

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LSAB: User Behavioral Pattern Modeling in Sequential Recommendation by Learning Self-Attention Bias;ACM Transactions on Knowledge Discovery from Data;2024-01-13

2. WASM: A Dataset for Hashtag Recommendation for Arabic Tweets;Arabian Journal for Science and Engineering;2024-01-03

3. A Comprehensive Survey on Automatic Knowledge Graph Construction;ACM Computing Surveys;2023-11-30

4. Research on the Design of Recommendation System for Learning Methods Based on Bayesian Networks;2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT);2023-11-10

5. A transformer framework for generating context-aware knowledge graph paths;Applied Intelligence;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3