Affiliation:
1. School of Computing, Macquarie University, Australia
2. School of Computer Science and Engineering, Beihang University, China
3. School of Cyber Science and Technology, Beihang University, China
4. Research Center for Knowledge Engineering, Zhejiang Lab, China and Key Laboratory of Knowledge Engineering with Big Data (the Ministry of Education of China), Hefei University of Technology, China
Abstract
Automatic knowledge graph construction aims at manufacturing structured human knowledge. To this end, much effort has historically been spent extracting informative fact patterns from different data sources. However, more recently, research interest has shifted to acquiring conceptualized structured knowledge beyond informative data. In addition, researchers have also been exploring new ways of handling sophisticated construction tasks in diversified scenarios. Thus, there is a demand for a systematic review of paradigms to organize knowledge structures beyond data-level mentions. To meet this demand, we comprehensively survey more than 300 methods to summarize the latest developments in knowledge graph construction. A knowledge graph is built in three steps: knowledge acquisition, knowledge refinement, and knowledge evolution. The processes of knowledge acquisition are reviewed in detail, including obtaining entities with fine-grained types and their conceptual linkages to knowledge graphs; resolving coreferences; and extracting entity relationships in complex scenarios. The survey covers models for knowledge refinement, including knowledge graph completion, and knowledge fusion. Methods to handle knowledge evolution are also systematically presented, including condition knowledge acquisition, condition knowledge graph completion, and knowledge dynamic. We present the paradigms to compare the distinction among these methods along the axis of the data environment, motivation, and architecture. Additionally, we also provide briefs on accessible resources that can help readers to develop practical knowledge graph systems. The survey concludes with discussions on the challenges and possible directions for future exploration.
Funder
Australian Research Council
National Key R&D Program of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献