A Methodology for Exposing Risk in Achieving Emergent System Properties

Author:

Layman Lucas1,Basili Victor R.2,Zelkowitz Marvin V.3

Affiliation:

1. Fraunhofer Center for Experimental Software Engineering, College Park, MD

2. University of Maryland at College Park, the Fraunhofer Center for Experimental Software Engineering, and King Abdulaziz University, College Park, MD

3. University of Maryland at College Park and the Fraunhofer Center for Experimental Software Engineering, College Park, MD

Abstract

Determining whether systems achieve desired emergent properties, such as safety or reliability, requires an analysis of the system as a whole, often in later development stages when changes are difficult and costly to implement. In this article we propose the Process Risk Indicator (PRI) methodology for analyzing and evaluating emergent properties early in the development cycle. A fundamental assumption of system engineering is that risk mitigation processes reduce system risks, yet these processes may also be a source of risk: (1) processes may not be appropriate for achieving the desired emergent property; or (2) processes may not be followed appropriately. PRI analyzes development process artifacts (e.g., designs pertaining to reliability or safety analysis reports) to quantify process risks that may lead to higher system risk. We applied PRI to the hazard analysis processes of a network-centric, Department of Defense system-of-systems and two NASA spaceflight projects to assess the risk of not achieving one such emergent property, software safety, during the early stages of the development lifecycle. The PRI methodology was used to create measurement baselines for process indicators of software safety risk, to identify risks in the hazard analysis process, and to provide feedback to projects for reducing these risks.

Funder

National Aeronautics and Space Administration

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk-based supervisory control for autonomous ship navigation;Journal of Marine Science and Technology;2023-06-09

2. The Perspectives on Developing a Conceptual Model for Exploring Emergent Behaviors in Complex Systems;Lecture Notes in Electrical Engineering;2023

3. The Challenge of Complexity in Dependable PLC-Based Systems;2015 IEEE 39th Annual Computer Software and Applications Conference;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3