Risk-based supervisory control for autonomous ship navigation

Author:

Blindheim SimonORCID,Johansen Tor Arne,Utne Ingrid Bouwer

Abstract

AbstractThis paper proposes a novel method to transform the results of qualitative risk analysis into a numeric optimal control problem for autonomous ship navigation. Today, making autonomous high-level decisions replacing a crew onboard is considered difficult, in some part due to the complexity of managing the operational risks involved. Although human supervisors, e.g., located in remote operating control centers are still needed for safety and liability reasons, there is a growing demand for complex decisions to be made by the onboard control system itself, both during normal operations and in emergencies. This paper suggests general principles for how the results from systems-theoretic process analysis (STPA) can be transformed into a quantitative and computationally tractable optimization problem, solved by a MPC-based decision-making algorithm for autonomous navigation. The proposed method is demonstrated and evaluated by simulating an autonomous ship navigating in a coastal environment. It is concluded that the proposed method may serve as a reasonable and valuable bridge between the realms of qualitative risk analysis and numerical optimal control for risk-aware autonomous control and decision-making.

Funder

Norges Forskningsråd

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3