A Compositional Theory of Linearizability

Author:

Oliveira Vale Arthur1ORCID,Shao Zhong1ORCID,Chen Yixuan1ORCID

Affiliation:

1. Yale University, USA

Abstract

Compositionality is at the core of programming languages research and has become an important goal toward scalable verification of large systems. Despite that, there is no compositional account of linearizability, the gold standard of correctness for concurrent objects.In this paper, we develop a compositional semantics for linearizable concurrent objects. We start by showcasing a common issue, which is independent of linearizability, in the construction of compositional models of concurrent computation: interaction with the neutral element for composition can lead to emergent behaviors, a hindrance to compositionality. Category theory provides a solution for the issue in the form of the Karoubi envelope. Surprisingly, and this is the main discovery of our work, this abstract construction is deeply related to linearizability and leads to a novel formulation of it. Notably, this new formulation neither relies on atomicity nor directly upon happens-before ordering and is only possible because of compositionality, revealing that linearizability and compositionality are intrinsically related to each other.We use this new, and compositional, understanding of linearizability to revisit much of the theory of linearizability, providing novel, simple, algebraic proofs of the locality property and of an analogue of the equivalence with observational refinement. We show our techniques can be used in practice by connecting our semantics with a simple program logic that is nonetheless sound concerning this generalized linearizability.

Funder

NSF

DARPA and NIWC Pacific

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ThreadAbs: A template to build verified thread-local interfaces with software scheduler abstractions;Journal of Systems Architecture;2024-02

2. A Compositional Theory of Linearizability;Journal of the ACM;2024-01-27

3. A Universal, Sound, and Complete Forward Reasoning Technique for Machine-Verified Proofs of Linearizability;Proceedings of the ACM on Programming Languages;2024-01-05

4. A Compositional Theory of Linearizability;Proceedings of the ACM on Programming Languages;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3