User Behavior Analysis and Video Popularity Prediction on a Large-Scale VoD System

Author:

Huang Lei1ORCID,Ding Bowen1,Wang Aining1,Xu Yuedong1ORCID,Zhou Yipeng2,Li Xiang1

Affiliation:

1. Fudan University, Shanghai, China

2. Macquarie University, Australia

Abstract

Understanding streaming user behavior is crucial to the design of large-scale Video-on-Demand (VoD) systems. In this article, we begin with the measurement of individual viewing behavior from two aspects: the temporal characteristics and user interest. We observe that active users spend more hours on each active day, and their daily request time distribution is more scattered than that of the less active users, while the inter-view time distribution differs negligibly between two groups. The common interest in popular videos and the latest uploaded videos is observed in both groups. We then investigate the predictability of video popularity as a collective user behavior through early views. In the light of the limitations of classical approaches, the Autoregressive-Moving-Average (ARMA) model is employed to forecast the popularity dynamics of individual videos at fine-grained time scales, thus achieving much higher prediction accuracy. When applied to video caching, the ARMA-assisted Least Frequently Used (LFU) algorithm can outperform the Least Recently Used (LRU) by 11--16%, the well-tuned LFU by 6--13%, and the LFU is only 2--4% inferior to the offline LFU in terms of hit ratio.

Funder

National Natural Science Fund for Distinguished Young Scholar of China

National Natural Science Foundation of China

CERNET Innovation Project

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3