VIDEO POPULARITY PREDICTION USING STACKED BILSTM LAYERS

Author:

Sangwan Neeti,Bhatnagar Vishal

Abstract

Social media is now not only limited to being a life event sharing platform, but it also has evolved as a monetary medium. Advertisements showing on popular videos may result in more sales conversion. So it is of utmost interest to predict the popularity of videos before uploading it on the platform. In this research article, we propose a deep learning algorithm to predict the popularity of YouTube videos. With the content and temporal features of the YouTube videos dataset, we use a novel stack of deep learning layers. We validate the approach with state-of-the-art methods and prove that the proposed complex stacked architecture gives more accurate and stable results. Results are also tested for short duration prediction with a different number of reference days after video publishing.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3