Becoming a computer scientist

Author:

Pearl Amy,Pollack Martha E.,Riskin Eve,Wolf Elizabeth1,Thomas Becky,Wu Alice

Affiliation:

1. Stanford Univ., Stanford, CA

Abstract

It is well known that women are significantly underrepresented in scientific fields in the United States, and computer science is no exception. As of 1987- 1988, women constituted slightly more than half of the U.S. population and 45% of employed workers in the U.S., but they made up only 30% of employed computer scientists. Moreover, they constituted only 10% of employed doctoral-level computer scientists. During the same time period, women made up 20% of physicians and, at the doctoral level, 35% of psychologists, 22% of life scientists, and 10% of mathematicians employed in the U.S. On the other hand, there are some disciplines in which women represent an even smaller proportion at the doctoral level: in 1987-88, 8% of physical scientists, and only 2.5% of engineers were women [21]. 1 The underrepresentation of women in computer science is alarming for at least two reasons. First, it raises the disturbing possibility that the field of computer science functions in ways that prevent or hinder women from becoming part of it. If this is so, those in the discipline need to evaluate their practices to ensure that fair and equal treatment is being provided to all potential and current computer scientists. Practices that exclude women are not only unethical, but they are likely to thwart the discipline's progress, as potential contributors to the field are discouraged from participation. The second reason for concern about the underrepresentation of women in computer science relates to demographic trends in the U.S., which suggest a significant decrease in the number of white males entering college during the next decade. At the same time, the number of jobs requiring scientific or engineering training will continue to increase. Because white males have traditionally constituted the vast majority of trained scientists and engineers in this country, experts have predicted that a critical labor shortage is likely early in the next century [4, 25]. To confront this possibility, the federal government has begun to expend resources to study the problem further. A notable example is the establishment of a National Task Force on Women, Minorities, and the Handicapped in Science and Technology. Their final report, issued in December of 1989, lists a number of government and industrial programs aimed at preventing a labor shortage by increasing the number of women and minorities trained as scientists and engineers [5]. In light of these facts, the Committee on the Status of Women in Computer Science, a subcommittee of the ACM's Committee on Scientific Freedom and Human Rights, was established with the goal of studying the causes of women's continued underrepresentation in the field, and developing proposed solutions to problems found. It is the committee's belief that the low number of women working as computer scientists is inextricably tied up with the particular difficulties that women face in becoming computer scientists. Studies show that women in computer science programs in U.S. universities terminate their training earlier than men do. Between 1983 and 1986 (the latest year for which we have such figures) the percentage of bachelor's degrees in computer science awarded to women was in the range of 36-37%, while the percentage of master's degrees was in the range of 28-30s. During the same time span, the percentage of doctoral degrees awarded to women has only been in the range of 10-12%, and it has remained at that level, with the exception of a slight increase in 1989 [16, 21]. Moreover, the discrepancy between the numbers of men and women continues to increase when we look at the people who are training the future computer scientists: women currently hold only 6.5% of the faculty positions in the computer science and computer engineering departments in the 158 Ph.D.-granting institutions included in the 1988- 1989 Taulbee Survey (See Communications September 1990). In fact, a third of these departments have no female faculty members at all [16]. This pattern of decreasing representation is generally consistent with that of other scientific and engineering fields [4, 25]. It is often described as “pipeline shrinkage”: as women move along the academic pipeline, their percentages continue to shrink. The focus of this report is pipeline shrinkage for women in computer science. We describe the situation for women at all stages of training in computer science, from the precollege level through graduate school. Because many of the problems discussed are related to the lack of role models for women who are in the process of becoming computer scientists, we also concern ourselves with the status of women faculty members. We not only describe the problems, but also make specific recommendations for change and encourage further study of those problems whose solutions are not yet well understood. Of course, our focus on computer science in the university by no means exhausts the set of issues that are relevant to an investigation of women in computer science. Most notably, we do not directly address issues that are of concern exclusively or primarily to women in industry. Although some of the problems we discuss are common to all women computer scientists, there are, without doubt, other problems that are unique to one group or the other. Nonetheless, the committee felt that an examination of the process of becoming a computer scientist provided a good starting point for a wider investigation of women in the field. Clearly, to increase the number of women in industrial computer science, one must first increase the number of women trained in the discipline. Thus, we need to consider why women stop their training earlier than men: too few women with bachelor's degrees in computer science translates into too few women in both industry and academia. Moreover, because of the documented positive effects of same-sex role models [12], it is also important to consider why women drop out in higher numbers than do men even later in their academic training: too few women with doctorate degrees results in too few women faculty members. This in turn means inadequate numbers of role models for younger women in the process of becoming computer scientists.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference24 articles.

1. Barriers to equality in academia: Women in computer science at MIT. Laboratory for Computer Science and the Artificial Intelligence Laboratory at M.I.T. 1983. Barriers to equality in academia: Women in computer science at MIT. Laboratory for Computer Science and the Artificial Intelligence Laboratory at M.I.T. 1983.

2. Changing America: The new face of science and engineering- Interim Rep. The Task Force on Women Minorities and the Handicapped in Science and Technology Washington D.C. 1988. Changing America: The new face of science and engineering- Interim Rep. The Task Force on Women Minorities and the Handicapped in Science and Technology Washington D.C. 1988.

3. Changing America: The new face of science and engineering-Final Rep. The Task Force on Women Minorities and the Handicapped in Science and Technology Washington D.C. 1989. Changing America: The new face of science and engineering-Final Rep. The Task Force on Women Minorities and the Handicapped in Science and Technology Washington D.C. 1989.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ten Years, Ten Trends: The First Decade of an Affordable At-Scale Degree;Proceedings of the Eleventh ACM Conference on Learning @ Scale;2024-07-09

2. Why Women Go Elsewhere;Handbook of Research on Exploring Gender Equity, Diversity, and Inclusion Through an Intersectional Lens;2023-06-02

3. Pixasso;Proceedings of the Seventh ACM Conference on Learning @ Scale;2020-08-12

4. Success, Hype or Myth for Women in Computing?;Proceedings of the First African Conference on Human Computer Interaction;2016-11-21

5. Berkeley Foundation for Opportunities in Information Technology;ACM Transactions on Computing Education;2011-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3