Neural Network Pruning by Recurrent Weights for Finance Market

Author:

Pei Songwen1,Wu Yusheng2,Guo Jin3,Qiu Meikang4ORCID

Affiliation:

1. University of Shanghai for Science and Technology, and ICT, Chinese Academy of Sciences, Beijing, China

2. Department of Computer Science & Engineering, University of Shanghaifor Science and Technology, Shanghai, China

3. School of Economics, Peking University, Beijing, China

4. Department of Computer Science, Texas A&M University-Commerce, Texas, USA

Abstract

Convolutional Neural Networks (CNNs) and deep learning technology are applied in current financial market to rapidly promote the development of finance market and Internet economy. The continuous development of neural networks with more hidden layers improves the performance but increases the computational complexity. Generally, channel pruning methods are useful to compact neural networks. However, typical channel pruning methods would remove layers by mistake due to the static pruning ratio of manual setting, which could destroy the whole structure of neural networks. It is difficult to improve the ratio of compressing neural networks only by pruning channels while maintaining good network structures. Therefore, we propose a novel neural Networks Pruning by Recurrent Weights ( NPRW ) that can repeatedly evaluate the significance of weights and adaptively adjust them to compress neural networks within acceptable loss of accuracy. The recurrent weights with low sensitivity are compulsorily set to zero by evaluating the magnitude of weights, and pruned network only uses a few significant weights. Then, we add the regularization to the scaling factors on neural networks, in which recurrent weights with high sensitivity can be dynamically updated and weights of low sensitivity stay at zero invariably. By this way, the significance of channels can be quantitatively evaluated by recurrent weights. It has been verified with typical neural networks of LeNet, VGGNet, and ResNet on multiple benchmark datasets involving stock index futures, digital recognition, and image classification. The pruned LeNet-5 achieves the 58.9% reduction amount of parameters with 0.29% loss of total accuracy for Shanghai and Shenzhen 300 stock index futures. As for the CIFAR-10, the pruned VGG-19 reduces more than 50% FLOPs, and the decrease of network accuracy is less than 0.5%. In addition, the pruned ResNet-164 tested on the SVHN reduces more than 58% FLOPs with relative improvement on accuracy by 0.11%.

Funder

National Natural Science Foundation of China

Shanghai Natural Science Foundation

Open Project Program of Shanghai Key Laboratory of Data Science

State Key Lab of Computer Architecture, ICT, CAS

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3