Joint Architecture Design and Workload Partitioning for DNN Inference on Industrial IoT Clusters

Author:

Fang Weiwei1ORCID,Xu Wenyuan1ORCID,Yu Chongchong2ORCID,Xiong Neal. N.3ORCID

Affiliation:

1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

2. Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing, China

3. Department of Computer Science and Mathematics, Sul Ross State University, Alpine, Texas

Abstract

The advent of Deep Neural Networks (DNNs) has empowered numerous computer-vision applications. Due to the high computational intensity of DNN models, as well as the resource constrained nature of Industrial Internet-of-Things (IIoT) devices, it is generally very challenging to deploy and execute DNNs efficiently in the industrial scenarios. Substantial research has focused on model compression or edge-cloud offloading, which trades off accuracy for efficiency or depends on high-quality infrastructure support, respectively. In this article, we present EdgeDI, a framework for executing DNN inference in a partitioned, distributed manner on a cluster of IIoT devices. To improve the inference performance, EdgeDI exploits two key optimization knobs, including: (1) Model compression based on deep architecture design, which transforms the target DNN model into a compact one that reduces the resource requirements for IIoT devices without sacrificing accuracy; (2) Distributed inference based on adaptive workload partitioning, which achieves high parallelism by adaptively balancing the workload distribution among IIoT devices under heterogeneous resource conditions. We have implemented EdgeDI based on PyTorch, and evaluated its performance with the NEU-CLS defect classification task and two typical DNN models (i.e., VGG and ResNet) on a cluster of heterogeneous Raspberry Pi devices. The results indicate that the proposed two optimization approaches significantly outperform the existing solutions in their specific domains. When they are well combined, EdgeDI can provide scalable DNN inference speedups that are very close to or even much higher than the theoretical speedup bounds, while still maintaining the desired accuracy.

Funder

National Science Foundation of China

Beijing Municipal Natural Science Foundation

Open Project of Key Laboratory of Industrial Internet of Things & Networked Control, Ministry of Education

Open Research Fund Program of Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing Technology and Business University

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EdgeCI: Distributed Workload Assignment and Model Partitioning for CNN Inference on Edge Clusters;ACM Transactions on Internet Technology;2024-05-06

2. Model Parallelism Optimization for Distributed DNN Inference on Edge Devices;2023 IEEE 14th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3