A Transformation Framework for Optimizing Task-Parallel Programs

Author:

Nandivada V. Krishna1,Shirako Jun2,Zhao Jisheng2,Sarkar Vivek2

Affiliation:

1. IIT Madras

2. Rice University

Abstract

Task parallelism has increasingly become a trend with programming models such as OpenMP 3.0, Cilk, Java Concurrency, X10, Chapel and Habanero-Java (HJ) to address the requirements of multicore programmers. While task parallelism increases productivity by allowing the programmer to express multiple levels of parallelism, it can also lead to performance degradation due to increased overheads. In this article, we introduce a transformation framework for optimizing task-parallel programs with a focus on task creation and task termination operations. These operations can appear explicitly in constructs such as async, finish in X10 and HJ, task, taskwait in OpenMP 3.0, and spawn, sync in Cilk, or implicitly in composite code statements such as foreach and ateach loops in X10, forall and foreach loops in HJ, and parallel loop in OpenMP. Our framework includes a definition of data dependence in task-parallel programs, a happens-before analysis algorithm, and a range of program transformations for optimizing task parallelism. Broadly, our transformations cover three different but interrelated optimizations: (1) finish-elimination , (2) forall-coarsening , and (3) loop-chunking . Finish-elimination removes redundant task termination operations, forall-coarsening replaces expensive task creation and termination operations with more efficient synchronization operations, and loop-chunking extracts useful parallelism from ideal parallelism. All three optimizations are specified in an iterative transformation framework that applies a sequence of relevant transformations until a fixed point is reached. Further, we discuss the impact of exception semantics on the specified transformations, and extend them to handle task-parallel programs with precise exception semantics. Experimental results were obtained for a collection of task-parallel benchmarks on three multicore platforms: a dual-socket 128-thread (16-core) Niagara T2 system, a quad-socket 16-core Intel Xeon SMP, and a quad-socket 32-core Power7 SMP. We have observed that the proposed optimizations interact with each other in a synergistic way, and result in an overall geometric average performance improvement between 6.28× and 10.30×, measured across all three platforms for the benchmarks studied.

Funder

Cisco Systems

Adaptive Computing

International Business Machines Corporation

Division of Computing and Communication Foundations

New Faculty Seed Grant

Indian Institute of Technology Madras

Texas Medical Center

Center for Domain-Specific Computing

Qlogic

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Homeostasis: Design and Implementation of a Self-Stabilizing Compiler;ACM Transactions on Programming Languages and Systems;2024-05

2. COWS for High Performance: Cost Aware Work Stealing for Irregular Parallel Loop;ACM Transactions on Architecture and Code Optimization;2024-01-19

3. Distributing Simplex-Shaped Nested for-Loops to Identify Carcinogenic Gene Combinations;2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2023-05

4. Static prediction of parallel computation graphs;Proceedings of the ACM on Programming Languages;2022-01-12

5. On feedback vertex set in reducible flow hypergraphs;Procedia Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3