Homeostasis: Design and Implementation of a Self-Stabilizing Compiler

Author:

Nougrahiya Aman1ORCID,Nandivada V. Krishna1ORCID

Affiliation:

1. Department of CSE, IIT Madras, Chennai, India

Abstract

Mainstream compilers perform a multitude of analyses and optimizations on the given input program. Each analysis (such as points-to analysis) may generate a program-abstraction (such as points-to graph). Each optimization is typically composed of multiple alternating phases of inspection of such program-abstractions and transformations of the program. Upon transformation of a program, the program-abstractions generated by various analyses may become inconsistent with the modified program. Consequently, the correctness of the downstream inspection (and consequent transformation) phases cannot be ensured until the relevant program-abstractions are stabilized ; that is, the program-abstractions are either invalidated or made consistent with the modified program. In general, the existing compiler frameworks do not perform automated stabilization of the program-abstractions and instead leave it to the compiler pass writers to deal with the complex task of identifying the relevant program-abstractions to be stabilized, the points where the stabilization is to be performed, and the exact procedure of stabilization. In this article, we address these challenges by providing the design and implementation of a novel compiler-design framework called Homeostasis . Homeostasis automatically captures all the program changes performed by each transformation phase, and later, triggers the required stabilization using the captured information, if needed. We also provide a formal description of Homeostasis and a correctness proof thereof. To assess the feasibility of using Homeostasis in compilers of parallel programs, we have implemented our proposed idea in IMOP, a compiler framework for OpenMP C programs. Furthermore, to illustrate the benefits of using Homeostasis , we have implemented a set of standard data-flow passes, and a set of involved optimizations that are used to remove redundant barriers in OpenMP C programs. Implementations of none of these optimizations in IMOP required any additional lines of code for stabilization of the program-abstractions. We present an evaluation in the context of these optimizations and analyses, which demonstrates that Homeostasis is efficient and easy to use.

Funder

SERB CRG

NSM

Publisher

Association for Computing Machinery (ACM)

Reference75 articles.

1. Unique Worker model for OpenMP

2. Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Programming Language. Ph.D. Dissertation. DIKU, University of Copenhagen.

3. Reviser: efficiently updating IDE-/IFDS-based data-flow analyses in response to incremental program changes

4. Interprocedural strength reduction of critical sections in explicitly-parallel programs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3