Chain: tasks and channels for reliable intermittent programs

Author:

Colin Alexei1,Lucia Brandon1

Affiliation:

1. Carnegie Mellon University, USA

Abstract

Energy harvesting computers enable general-purpose computing using energy collected from their environment. Energy-autonomy of such devices has great potential, but their intermittent power supply poses a challenge. Intermittent program execution compromises progress and leaves state inconsistent. This work describes Chain: a new model for programming intermittent devices. A Chain program is a set of programmer-defined tasks that compute and exchange data through channels. Chain guarantees forward progress at task granularity. A task is restartable and never sees inconsistent state, because its input and output channels are separated. Our system supports language features for expressing advanced data exchange patterns and for encapsulating reusable functionality. Chain fundamentally differs from state-of-the-art checkpointing approaches and does not incur the associated overhead. We implement Chain as C language extensions and a runtime library. We used Chain to implement four applications: machine learning, encryption, compression, and sensing. In experiments, Chain ensured consistency where prior approaches failed and improved throughput by 2-7x over the leading state-of-the-art system.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference44 articles.

1. Spot

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stash: Flexible Energy Storage for Intermittent Sensors;ACM Transactions on Embedded Computing Systems;2024-01-19

2. ELIXIR: An Expedient Connection Paradigm for Self-Powered IoT Devices;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-11

3. ESS: Repeatable Evaluation of Energy Harvesting Subsystems for Industry-Grade IoT Platforms;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01

4. Fine-grained Hardware Acceleration for Efficient Batteryless Intermittent Inference on the Edge;ACM Transactions on Embedded Computing Systems;2023-09-26

5. A Type System for Safe Intermittent Computing;Proceedings of the ACM on Programming Languages;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3