Stash: Flexible Energy Storage for Intermittent Sensors

Author:

Alsubhi Arwa1,Babatunde Simeon2,Tobias Nicole2,Sorber Jacob1

Affiliation:

1. Clemson University School of Computing, USA

2. Clemson University, USA

Abstract

Batteryless sensors promise a sustainable future for sensing, but they face significant challenges when storing and using environmental energy. Incoming energy can fluctuate unpredictably between periods of scarcity and abundance, and device performance depends on both incoming energy and how much a device can store. Existing batteryless devices have used fixed or run-time selectable front-end capacitor banks to meet the energy needs of different tasks. Neither approach adapts well to rapidly changing energy harvesting conditions, nor does it allow devices to store excess energy during times of abundance without sacrificing performance. This paper presents Stash, a hardware back-end energy storage technique that allows batteryless devices to charge quickly and store excess energy when it is abundant, extending their operating time and carrying out additional tasks without compromising the main ones. Stash performs like a small capacitor device when small capacitors excel and like a large capacitor device when large capacitors excel, with no additional software complexity and negligible power overhead. We evaluate Stash using two applications—temperature sensing and wearable activity monitoring—under both synthetic solar energy and recorded solar and thermal traces from various human activities. Our results show that Stash increased sensor coverage by up to 15% under variable energy-harvesting conditions when compared to competitor configurations that used fixed small, large, and reconfigurable front-end energy storage.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference49 articles.

1. Choose the right prometheus - matrix: Self-powered solutions. (n d). https://www.matrixindustries.com/2118305w

2. Battery-less zero-maintenance embedded sensing at the mithræum of circus maximus

3. Efficient intermittent computing with differential checkpointing

4. JunIck Ahn, Daeyong Kim, Rhan Ha, and Hojung Cha. 2023. Controlling Action Space of Reinforcement Learning-based Energy Management in Batteryless Applications. IEEE Internet of Things Journal(2023).

5. AdaMICA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3