Energy-efficient datapath scheduling using multiple voltages and dynamic clocking

Author:

Mohanty Saraju P.1,Ranganathan N.2

Affiliation:

1. University of North Texas, Denton, TX

2. University of South Florida, Tampa, FL

Abstract

Recently, dynamic frequency scaling has been explored at the CPU and system levels for power optimization. Low-power datapath scheduling using multiple supply voltages has been well researched. In this work, we develop new datapath scheduling algorithms that use multiple supply voltages and dynamic frequency clocking in a coordinated manner in order to reduce the energy consumption of datapath circuits. In dynamic frequency clocking, the functional units can be operated at different frequencies depending on the computations occurring within the datapath during a given clock cycle. The strategy is to schedule high-energy units, such as multipliers at lower frequencies, so that they can be operated at lower voltages to reduce energy consumption and the low-energy units, such as adders at higher frequencies, to compensate for speed. The proposed time- and resource-constrained algorithms have been applied to various high-level synthesis benchmark circuits under different time and resource constraints. The experimental results show significant reduction in energy for both the algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variability-aware architecture level optimization techniques for robust nanoscale chip design;Computers & Electrical Engineering;2014-01

2. A fragmentation aware High-Level Synthesis flow for low power heterogenous datapaths;Integration;2013-03

3. Subword Switching Activity Minimization to Optimize Dynamic Power Consumption;IEEE Design & Test of Computers;2009-07

4. Power Optimization With Power Islands Synthesis;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2009-07

5. Restricted Chaining and Fragmentation Techniques in Power Aware High Level Synthesis;2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3