Reducing the Performance Gap between Soft Scalar CPUs and Custom Hardware with TILT

Author:

Tili Ilian1,Ovtcharov Kalin1,Steffan J. Gregory1

Affiliation:

1. University of Toronto, Ontario, Canada

Abstract

By using resource sharing field-programmable gate array (FPGA) compute engines, we can reduce the performance gap between soft scalar CPUs and resource-intensive custom datapath designs. This article demonstrates that Thread- and Instruction-Level parallel Template architecture (TILT), a programmable FPGA-based horizontally microcoded compute engine designed to highly utilize floating point (FP) functional units (FUs), can improve significantly the average throughput of eight FP-intensive applications compared to a soft scalar CPU (similar to a FP-extended Nios). For eight benchmark applications, we show that: (i) a base TILT configuration having a single instance for each FU type can improve the performance over a soft scalar CPU by 15.8 × , while requiring on average 26% of the custom datapaths’ area; (ii) selectively increasing the number of FUs can more than double TILT’s average throughput, reducing the custom-datapath-throughput-gap from 576 × to 14 × ; and (iii) replicated instances of the most computationally dense TILT configuration that fit within the area of each custom datapath design can reduce the gap to 8.27 × , while replicated instances of application-tuned configurations of TILT can reduce the custom-datapath-throughput-gap to an average of 5.22 × , and up to 3.41 × for the Matrix Multiply benchmark. Last, we present methods for design space reduction, and we correctly predict the computationally densest design for seven out of eight benchmarks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PLD: fast FPGA compilation to make reconfigurable acceleration compatible with modern incremental refinement software development;Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2022-02-22

2. XBERT: Xilinx Logical-Level Bitstream Embedded RAM Transfusion;2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM);2021-05

3. Transport-Triggered Soft Cores;2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3