1. Gabriel P Andrade , Rafael Frongillo , and Georgios Piliouras . 2021 . Learning in Matrix Games can be Arbitrarily Complex . In Conference on Learning Theory (COLT). Gabriel P Andrade, Rafael Frongillo, and Georgios Piliouras. 2021. Learning in Matrix Games can be Arbitrarily Complex. In Conference on Learning Theory (COLT).
2. Sanjeev Arora , Elad Hazan , and Satyen Kale . 2012. The multiplicative weights update method: a meta-algorithm and applications. Theory of computing 8, 1 ( 2012 ), 121--164. Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: a meta-algorithm and applications. Theory of computing 8, 1 (2012), 121--164.
3. James P. Bailey and Georgios Piliouras . 2018 . Multiplicative Weights Update in Zero-Sum Games. In ACM Confernce on Economics and Computation . 321--338. James P. Bailey and Georgios Piliouras. 2018. Multiplicative Weights Update in Zero-Sum Games. In ACM Confernce on Economics and Computation. 321--338.
4. David Balduzzi , Wojciech M. Czarnecki , Thomas W. Anthony , Ian M. Gemp , Edward Hughes , Joel Z. Leibo , Georgios Piliouras , and Thore Graepel . 2020. Smooth markets: A basic mechanism for organizing gradient-based learners. CoRR abs/2001.04678 ( 2020 ). arXiv:2001.04678 https://arxiv.org/abs/2001.04678 David Balduzzi, Wojciech M. Czarnecki, Thomas W. Anthony, Ian M. Gemp, Edward Hughes, Joel Z. Leibo, Georgios Piliouras, and Thore Graepel. 2020. Smooth markets: A basic mechanism for organizing gradient-based learners. CoRR abs/2001.04678 (2020). arXiv:2001.04678 https://arxiv.org/abs/2001.04678
5. Learning with a slowly changing distribution