Author:
Hakim Rashida,Milionis Jason,Papadimitriou Christos,Piliouras Georgios
Publisher
Springer Nature Switzerland
Reference49 articles.
1. Andrade, G.P., Frongillo, R., Piliouras, G.: Learning in matrix games can be arbitrarily complex. In: Conference on Learning Theory, pp. 159–185. PMLR (2021)
2. Andrade, G.P., Frongillo, R., Piliouras, G.: No-regret learning in games is Turing complete. In: ACM Conference on Economics and Computation (EC) (2023)
3. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theory Comput. 8(1), 121–164 (2012)
4. Babichenko, Y.: Completely uncoupled dynamics and Nash equilibria. Games Econ. Behav. 76(1), 1–14 (2012)
5. Bailey, J.P., Piliouras, G.: Multiplicative weights update in zero-sum games. In: ACM Conference on Economics and Computation (2018)