Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks

Author:

Sakalis Christos1ORCID,Kaxiras Stefanos1ORCID,Själander Magnus2ORCID

Affiliation:

1. Uppsala University, Uppsala, Sweden

2. Norwegian University of Science and Technology, Trondheim, Norway

Abstract

MicroScope and other similar microarchitectural replay attacks take advantage of the characteristics of speculative execution to trap the execution of the victim application in a loop, enabling the attacker to amplify a side-channel attack by executing it indefinitely. Due to the nature of the replay, it can be used to effectively attack software that are shielded against replay, even under conditions where a side-channel attack would not be possible (e.g., in secure enclaves). At the same time, unlike speculative side-channel attacks, microarchitectural replay attacks can be used to amplify the correct path of execution, rendering many existing speculative side-channel defenses ineffective. In this work, we generalize microarchitectural replay attacks beyond MicroScope and present an efficient defense against them. We make the observation that such attacks rely on repeated squashes of so-called “replay handles” and that the instructions causing the side-channel must reside in the same reorder buffer window as the handles. We propose Delay-on-Squash, a hardware-only technique for tracking squashed instructions and preventing them from being replayed by speculative replay handles. Our evaluation shows that it is possible to achieve full security against microarchitectural replay attacks with very modest hardware requirements while still maintaining 97% of the insecure baseline performance.

Funder

Swedish Research Council

Microsoft Research through its EMEA Ph.D. Scholarship Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3