ProWATCh

Author:

Patnaik Milan1,R Chidhambaranathan1,Garg Chirag1,Roy Arnab1,Devanathan V. R.2,Balachandran Shankar1,Kamakoti V.1

Affiliation:

1. Indian Institute of Technology Madras, Chennai, India

2. Texas Instruments Ltd, Bengaluru, India

Abstract

With the increase in process variations and diversity in workloads, it is imperative to holistically explore optimization techniques for power and temperature from the circuit layer right up to the compiler/ operating system (OS) layer. This article proposes one such holistic technique, called proactive workload aware temperature management framework for low-power chip multi-processors (ProWATCh). At the compiler level ProWATCh includes two techniques: (1) a novel compiler design for estimating the architectural parameters of a task at compile time; and (2) a model-based technique for dynamic estimation of architectural parameters at runtime. At the OS level ProWATCh integrates two techniques: (1) a workload- and temperature-aware process manager for dynamic distribution of tasks to different cores; and (2) a model predictive control-based task scheduler for generating the efficient sequence of task execution. At the circuit level ProWATCh implements either of two techniques: (1) a workload-aware voltage manager for dynamic supply and body bias voltage assignment for a given frequency in processors that support adaptive body bias (ABB); or (2) a workload-aware frequency governor for efficient assignment of upper and lower frequency bounds for frequency scaling in processors that do not support an ABB. Employing ProWATCh (with voltage manager) on an ABB-compatible 3D OpenSPARC architecture using MiBench benchmarks resulted in an average 18% ( 19ˆC ) reduction in peak temperature. Evaluating ProWATCh on an existing quad-core Intel Corei7 processor with frequency governor alone (as the processor does not support an ABB interface) resulted in 10% ( 8ˆC ) reduction in peak temperature when compared to what was obtained using the native Linux 3.0 completely fair scheduler (CFS). To study the effectiveness of the proposed framework across benchmark suites, ProWATCh was evaluated on a quad-core Intel Corei7 processor using CPU SPEC 2006 benchmarks which resulted in 7ˆC reduction in peak temperature as compared to the native Linux 3.0 CFS.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3