Automatic recognition of induction variables and recurrence relations by abstract interpretation

Author:

Ammarguellat Zahira1,Harrison W. L.1

Affiliation:

1. Center For Supercomputing Research and Development, University of Illinois at Urbana-Champaign, Urbana Illinois

Abstract

The recognition of recurrence relations is important in several ways to the compilation of programs. Induction variables, the simplest form of recurrence, are pivotal in loop optimizations and dependence testing. Many recurrence relations, although expressed sequentially by the programmer, lend themselves to efficient vector or parallel computation. Despite the importance of recurrences, vectorizing and parallelizing compilers to date have recognized them only in an ad-hoc fashion. In this paper we put forth a systematic method for recognizing recurrence relations automatically. Our method has two parts. First, abstract interpretation [CC77, CC79] is used to construct a map that associates each variable assigned in a loop with a symbolic form (expression) of its value. Second, the elements of this map are matched with patterns that describe recurrence relations. The scheme is easily extensible by the addition of templates, and is able to recognize nested recurrences by the propagation of the closed forms of recurrences from inner loops. We present some applications of this method and a proof of its correctness.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recurrence Analysis for Automatic Parallelization of Subscripted Subscripts;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

2. History of Abstract Interpretation;IEEE Annals of the History of Computing;2021

3. Static Analysis of Binary Code with Memory Indirections Using Polyhedra;Lecture Notes in Computer Science;2019

4. Revealing parallel scans and reductions in recurrences through function reconstruction;Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques;2018-11

5. Non-linear reasoning for invariant synthesis;Proceedings of the ACM on Programming Languages;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3