NSDIE: Noise Suppressing Dark Image Enhancement Using Multiscale Retinex and Low-Rank Minimization

Author:

Jha Manvi1ORCID,Bhandari Ashish Kumar1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar-800005

Abstract

It is inevitable for dark images to have crucial information obscured by low-light conditions, which are worsened by the presence of noise in these images. This work introduces a groundbreaking solution, Noise-Suppressing Dark Image Enhancement for Web Apps (NSDIE), to address the challenging task of enhancing low-light images marred by noise. The proposed work utilizes a low-rank model with simultaneous enhancement of reflectance and illumination components to improve the nighttime scenes while also eradicating the present noise of the image. The reflectance component is further processed using a multiscale retinex model to compensate for the possible color distortions while the illumination component is enhanced using the camera response model to ensure the genuineness of the scene. The proposed work is also tested for a standalone application and is presented to the user through a web portal to aid the concerns of dark image enhancement in the daily life of the user. Rigorous quantitative and qualitative analyses assert NSDIE's superiority over existing techniques, establishing its pivotal role in addressing the critical concern of dark image enhancement.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference40 articles.

1. Zhai, G., Sun, W., Min, X., & Zhou, J. ( 2021 ). Perceptual quality assessment of low-light image enhancement. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(4), 1-24 . Zhai, G., Sun, W., Min, X., & Zhou, J. (2021). Perceptual quality assessment of low-light image enhancement. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(4), 1-24.

2. Xu, X., Wang, S., Wang, Z., Zhang, X., & Hu, R. ( 2021 ). Exploring image enhancement for salient object detection in low light images. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(1s), 1-19 . Xu, X., Wang, S., Wang, Z., Zhang, X., & Hu, R. (2021). Exploring image enhancement for salient object detection in low light images. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(1s), 1-19.

3. Hao, S., Han, X., Guo, Y., & Wang, M. ( 2022 ). Decoupled low-light image enhancement. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(4), 1-19 . Hao, S., Han, X., Guo, Y., & Wang, M. (2022). Decoupled low-light image enhancement. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(4), 1-19.

4. Zhou, M., Leng, H., Fang, B., Xiang, T., Wei, X., & Jia, W. ( 2023 ). Low-light Image Enhancement via a Frequency-based Model with Structure and Texture Decomposition. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 19(6), 1-23 . Zhou, M., Leng, H., Fang, B., Xiang, T., Wei, X., & Jia, W. (2023). Low-light Image Enhancement via a Frequency-based Model with Structure and Texture Decomposition. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 19(6), 1-23.

5. Srinivas, K., & Bhandari, A. K. ( 2023 ). Context-Based Novel Histogram Bin Stretching Algorithm for Automatic Contrast Enhancement. ACM Transactions on Multimedia Computing, Communications and Applications, 1-24 . Srinivas, K., & Bhandari, A. K. (2023). Context-Based Novel Histogram Bin Stretching Algorithm for Automatic Contrast Enhancement. ACM Transactions on Multimedia Computing, Communications and Applications, 1-24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3