Decoupled Low-Light Image Enhancement

Author:

Hao Shijie1,Han Xu1,Guo Yanrong1,Wang Meng1

Affiliation:

1. Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education and School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China

Abstract

The visual quality of photographs taken under imperfect lightness conditions can be degenerated by multiple factors, e.g., low lightness, imaging noise, color distortion, and so on. Current low-light image enhancement models focus on the improvement of low lightness only, or simply deal with all the degeneration factors as a whole, therefore leading to sub-optimal results. In this article, we propose to decouple the enhancement model into two sequential stages. The first stage focuses on improving the scene visibility based on a pixel-wise non-linear mapping. The second stage focuses on improving the appearance fidelity by suppressing the rest degeneration factors. The decoupled model facilitates the enhancement in two aspects. On the one hand, the whole low-light enhancement can be divided into two easier subtasks. The first one only aims to enhance the visibility. It also helps to bridge the large intensity gap between the low-light and normal-light images. In this way, the second subtask can be described as the local appearance adjustment. On the other hand, since the parameter matrix learned from the first stage is aware of the lightness distribution and the scene structure, it can be incorporated into the second stage as the complementary information. In the experiments, our model demonstrates the state-of-the-art performance in both qualitative and quantitative comparisons, compared with other low-light image enhancement models. In addition, the ablation studies also validate the effectiveness of our model in multiple aspects, such as model structure and loss function.

Funder

National Nature Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying deep learning image enhancement methods to improve person re-identification;Neurocomputing;2024-09

2. Illumination-Aware Low-Light Image Enhancement with Transformer and Auto-Knee Curve;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-29

3. Detail-preserving Joint Image Upsampling;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-13

4. Real-Time Attentive Dilated U-Net for Extremely Dark Image Enhancement;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-12

5. Light-Aware Contrastive Learning for Low-Light Image Enhancement;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3