Affiliation:
1. University of Texas at Dallas, Richardson, TX
Abstract
Answering medical questions related to complex medical cases, as required in modern Clinical Decision Support (CDS) systems, imposes (1) access to vast medical knowledge and (2) sophisticated inference techniques. In this article, we examine the representation and role of combining medical knowledge automatically derived from (a) clinical practice and (b) research findings for inferring answers to medical questions. Knowledge from medical practice was distilled from a vast Electronic Medical Record (EMR) system, while research knowledge was processed from biomedical articles available in PubMed Central. The knowledge automatically acquired from the EMR system took into account the clinical picture and therapy recognized from each medical record to generate a probabilistic Markov network denoted as a Clinical Picture and Therapy Graph (CPTG). Moreover, we represented the background of medical questions available from the description of each complex medical case as a medical knowledge sketch. We considered three possible representations of medical knowledge sketches that were used by four different probabilistic inference methods to pinpoint the answers from the CPTG. In addition, several answer-informed relevance models were developed to provide a ranked list of biomedical articles containing the answers. Evaluations on the TREC-CDS data show which of the medical knowledge representations and inference methods perform optimally. The experiments indicate an improvement of biomedical article ranking by 49% over state-of-the-art results.
Funder
National Human Genome Research Institute of the National Institutes of Health under award
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献