Knowledge Base Embedding for Sampling-Based Prediction

Author:

Zhang Richong1ORCID,Kim Jaein1ORCID,Mei Jiajie1ORCID,Mao Yongyi2ORCID

Affiliation:

1. SKLSDE, School of Computer Science and Engineering, Beihang University, Beijing, China

2. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Abstract

Each link prediction task requires different degrees of answer diversity. While a link prediction task may expect up to a couple of answers, another may expect nearly a hundred answers. Given this fact, the performance of a link prediction model can be estimated more accurately if a flexible number of obtained answers are estimated instead of a predefined number of answers. Inspired by this, in this article, we analyze two evaluation criteria for link prediction tasks, respectively ranking-based protocol and sampling-based protocol. Furthermore, we study two classes of models on link prediction task, direct model and latent-variable model respectively, to demonstrate that latent-variable model performs better under the sampling-based protocol. We then propose a latent-variable model where the framework of Conditional Variational AutoEncoder (CVAE) is applied. Experimental study suggests that the proposed model performs comparably to the current state-of-the-art even under the conventional rank-based protocol. Under the sampling-based protocol, the proposed model is shown to outperform various state-of-the-art models.

Funder

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

State Key Laboratory of Software Development Environment

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference32 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/. Software available from tensorflow.org.

2. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. 2007. Dbpedia: A Nucleus for a Web of Open Data. Springer.

3. Philip Bachman and Doina Precup. 2015. Variational generative stochastic networks with collaborative shaping. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15), (Lille, France, 6–11 July 2015). 1964–1972. http://jmlr.org/proceedings/papers/v37/bachman15.html.

4. Freebase

5. A semantic matching energy function for learning with multi-relational data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3