Multi-Scale User Behavior Network for Entire Space Multi-Task Learning
Author:
Affiliation:
1. Shanghai Jiao Tong University, Shanghai, China
2. Alibaba Group, Beijing, China
Funder
National Natural Science Foundation of China
Shanghai Municipal Science and Technology Major Project
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3511808.3557405
Reference34 articles.
1. Qingyao Ai , Keping Bi , Cheng Luo , Jiafeng Guo , and W Bruce Croft . 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. SIGIR ( 2018 ). Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. SIGIR (2018).
2. Rich Caruana . 1997. Multitask learning. Machine learning 28, 1 ( 1997 ), 41--75. Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41--75.
3. Junyoung Chung Sungjin Ahn and Yoshua Bengio. 2016. Hierarchical multiscale recurrent neural networks. In ICLR. Junyoung Chung Sungjin Ahn and Yoshua Bengio. 2016. Hierarchical multiscale recurrent neural networks. In ICLR.
4. Xin Dai Xiangnan Kong Tian Guo and Xinlu He. 2021. FiShNet: Fine-Grained Filter Sharing for Resource-Efficient Multi-Task Learning. In CIKM. Xin Dai Xiangnan Kong Tian Guo and Xinlu He. 2021. FiShNet: Fine-Grained Filter Sharing for Resource-Efficient Multi-Task Learning. In CIKM.
5. Ke Ding Xin Dong Yong He Lei Cheng Chilin Fu Zhaoxin Huan Hai Li Tan Yan Liang Zhang Xiaolu Zhang etal 2021. MSSM: a multiple-level sparse sharing model for efficient multi-task learning. In SIGIR. Ke Ding Xin Dong Yong He Lei Cheng Chilin Fu Zhaoxin Huan Hai Li Tan Yan Liang Zhang Xiaolu Zhang et al. 2021. MSSM: a multiple-level sparse sharing model for efficient multi-task learning. In SIGIR.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Residual Multi-Task Learner for Applied Ranking;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
2. Modeling multi-behavior sequence via HyperGRU contrastive network for micro-video recommendation;Knowledge-Based Systems;2024-07
3. A holistic view on positive and negative implicit feedback for micro-video recommendation;Knowledge-Based Systems;2024-01
4. Entire Space Cascade Delayed Feedback Modeling for Effective Conversion Rate Prediction;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3