An Empirical Study on the Membership Inference Attack against Tabular Data Synthesis Models

Author:

Hyeong Jihyeon1,Kim Jayoung2,Park Noseong2,Jajodia Sushil3

Affiliation:

1. Northwestern University, Evanston, IL, USA

2. Yonsei University, Seoul, South Korea

3. George Mason University, Fairfax, VA, USA

Funder

U.S. Office of Naval Research

U.S. National Science Foundation

Institute of Information & Communications Technology Planning & Evaluation

Publisher

ACM

Reference26 articles.

1. Deep Learning with Differential Privacy

2. Martin Arjovsky Soumith Chintala and Léon Bottou. 2017. Wasserstein GAN. http://arxiv.org/abs/1701.07875 cite arxiv:1701.07875. Martin Arjovsky Soumith Chintala and Léon Bottou. 2017. Wasserstein GAN. http://arxiv.org/abs/1701.07875 cite arxiv:1701.07875.

3. Roberto J. Bayardo and Rakesh Agrawal. 2005. Data Privacy through Optimal K-Anonymization . In Proceedings of the 21st International Conference on Data Engineering (ICDE '05) . IEEE Computer Society, USA, 217--228. https://doi.org/10.1109/ICDE. 2005 .42 10.1109/ICDE.2005.42 Roberto J. Bayardo and Rakesh Agrawal. 2005. Data Privacy through Optimal K-Anonymization. In Proceedings of the 21st International Conference on Data Engineering (ICDE '05). IEEE Computer Society, USA, 217--228. https://doi.org/10.1109/ICDE.2005.42

4. Brett Beaulieu-Jones , Zhiwei Wu , Chris Williams , Ran Lee , Sanjeev Bhavnani , James Byrd , and Casey Greene . 2019 . Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing . Circulation: Cardiovascular Quality and Outcomes , Vol. 12 (07 2019). https://doi.org/10.1161/CIRCOUTCOMES.118.005122 10.1161/CIRCOUTCOMES.118.005122 Brett Beaulieu-Jones, Zhiwei Wu, Chris Williams, Ran Lee, Sanjeev Bhavnani, James Byrd, and Casey Greene. 2019. Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing. Circulation: Cardiovascular Quality and Outcomes, Vol. 12 (07 2019). https://doi.org/10.1161/CIRCOUTCOMES.118.005122

5. Christopher M. Bishop . 2006. Pattern Recognition and Machine Learning (Information Science and Statistics) . Springer-Verlag , Berlin, Heidelberg . Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Empirical Study of Utility and Disclosure Risk for Tabular Data Synthesis Models: In-Depth Analysis and Interesting Findings;2024 IEEE International Conference on Big Data and Smart Computing (BigComp);2024-02-18

2. Can We Trust Synthetic Data in Medicine? A Scoping Review of Privacy and Utility Metrics;2023-11-28

3. SNAKE Challenge: Sanitization Algorithms under Attack;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

4. Evaluating the Impact of Adversarial Factors on Membership Inference Attacks;2023 IEEE Smart World Congress (SWC);2023-08-28

5. An Empirical Study on the Membership Inference Attack against Tabular Data Synthesis Models;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3