MadMax

Author:

Grech Neville1,Kong Michael2,Jurisevic Anton2,Brent Lexi2,Scholz Bernhard2,Smaragdakis Yannis1

Affiliation:

1. University of Athens, Greece

2. The University of Sydney, Australia

Abstract

Ethereum is a distributed blockchain platform, serving as an ecosystem for smart contracts: full-fledged intercommunicating programs that capture the transaction logic of an account. A gas limit caps the execution of an Ethereum smart contract: instructions, when executed, consume gas, and the execution proceeds as long as gas is available. Gas-focused vulnerabilities permit an attacker to force key contract functionality to run out of gas---effectively performing a permanent denial-of-service attack on the contract. Such vulnerabilities are among the hardest for programmers to protect against, as out-of-gas behavior may be uncommon in nonattack scenarios and reasoning about these vulnerabilities is nontrivial. In this paper, we identify gas-focused vulnerabilities and present MadMax: a static program analysis technique that automatically detects gas-focused vulnerabilities with very high confidence. MadMax combines a smart contract decompiler and semantic queries in Datalog. Our approach captures high-level program modeling concepts (such as "dynamic data structure storage" and "safely resumable loops") and delivers high precision and scalability. MadMax analyzes the entirety of smart contracts in the Ethereum blockchain in just 10 hours and flags vulnerabilities in contracts with a monetary value in billions of dollars. Manual inspection of a sample of flagged contracts shows that 81% of the sampled warnings do indeed lead to vulnerabilities.

Funder

European Research Council

Reach High

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vulnerability detection techniques for smart contracts: A systematic literature review;Journal of Systems and Software;2024-11

2. Empirical Study of Move Smart Contract Security: Introducing MoveScan for Enhanced Analysis;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

3. FunRedisp: Reordering Function Dispatch in Smart Contract to Reduce Invocation Gas Fees;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

4. A Survey of Ethereum Smart Contract Security: Attacks and Detection;Distributed Ledger Technologies: Research and Practice;2024-09-09

5. OpenSCV: an open hierarchical taxonomy for smart contract vulnerabilities;Empirical Software Engineering;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3