OpenSCV: an open hierarchical taxonomy for smart contract vulnerabilities

Author:

Vidal Fernando RichterORCID,Ivaki NaghmehORCID,Laranjeiro NunoORCID

Abstract

AbstractSmart contracts are nowadays at the core of most blockchain systems. Like all computer programs, smart contracts are subject to the presence of residual faults, including severe security vulnerabilities. However, the key distinction lies in how these vulnerabilities are addressed. In smart contracts, when a vulnerability is identified, the affected contract must be terminated within the blockchain, as due to the immutable nature of blockchains, it is impossible to patch a contract once deployed. In this context, research efforts have been focused on proactively preventing the deployment of smart contracts containing vulnerabilities, mainly through the development of vulnerability detection tools. Along with these efforts, several heterogeneous vulnerability classification schemes appeared (e.g., most notably DASP and SWC). At the time of writing, these are mostly outdated initiatives, even though new smart contract vulnerabilities are consistently uncovered. In this paper, we propose OpenSCV, a new and Open hierarchical taxonomy for Smart Contract vulnerabilities, which is open to community contributions and matches the current state of the practice while being prepared to handle future modifications and evolution. The taxonomy was built based on the analysis of the existing research on vulnerability classification, community-maintained classification schemes, and research on smart contract vulnerability detection. We show how OpenSCV covers the announced detection ability of the current vulnerability detection tools and highlight its usefulness in smart contract vulnerability research. To validate OpenSCV, we performed an expert-based analysis wherein we invited multiple experts engaged in smart contract security research to participate in a questionnaire. The feedback from these experts indicated that the categories in OpenSCV are representative, clear, easily understandable, comprehensive, and highly useful. Regarding the vulnerabilities, the experts confirmed that they are easily understandable.

Funder

Universidade de Coimbra

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3