Fast Connectivity Minimization on Large-Scale Networks

Author:

Chen Chen1,Peng Ruiyue2,Ying Lei3,Tong Hanghang4

Affiliation:

1. Google Inc., Mountain View, California

2. Translational MRI, LLC., Los Angeles, California

3. University of Michigan, Ann Arbor, Michigan

4. University of Illinois at Urbana-Champaign, Urbana, Illinois

Abstract

The connectivity of networks has been widely studied in many high-impact applications, ranging from immunization, critical infrastructure analysis, social network mining, to bioinformatic system studies. Regardless of the end application domains, connectivity minimization has always been a fundamental task to effectively control the functioning of the underlying system. The combinatorial nature of the connectivity minimization problem imposes an exponential computational complexity to find the optimal solution, which is intractable in large systems. To tackle the computational barrier, greedy algorithm is extensively used to ensure a near-optimal solution by exploiting the diminishing returns property of the problem. Despite the empirical success, the theoretical and algorithmic challenges of the problems still remain wide open. On the theoretical side, the intrinsic hardness and the approximability of the general connectivity minimization problem are still unknown except for a few special cases. On the algorithmic side, existing algorithms are hard to balance between the optimization quality and computational efficiency. In this article, we address the two challenges by (1) proving that the general connectivity minimization problem is NP-hard and is the best approximation ratio for any polynomial algorithms, and (2) proposing the algorithm CONTAIN and its variant CONTAIN + that can well balance optimization effectiveness and computational efficiency for eigen-function based connectivity minimization problems in large networks.

Funder

National Science Foundation

NSF Program on Fairness in AI in collaboration with Amazon

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3