Boundary Value Caching for Walk on Spheres

Author:

Miller Bailey1ORCID,Sawhney Rohan12ORCID,Crane Keenan1ORCID,Gkioulekas Ioannis1ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, United States of America

2. NVIDIA, Pittsburgh, United States of America

Abstract

Grid-free Monte Carlo methods such as walk on spheres can be used to solve elliptic partial differential equations without mesh generation or global solves. However, such methods independently estimate the solution at every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic problems. We propose a fast caching strategy which first estimates solution values and derivatives at randomly sampled points along the boundary of the domain (or a local region of interest). These cached values then provide cheap, output-sensitive evaluation of the solution (or its gradient) at interior points, via a boundary integral formulation. Unlike classic boundary integral methods, our caching scheme introduces zero statistical bias and does not require a dense global solve. Moreover we can handle imperfect geometry (e.g., with self-intersections) and detailed boundary/source terms without repairing or resampling the boundary representation. Overall, our scheme is similar in spirit to virtual point light methods from photorealistic rendering: it suppresses the typical salt-and-pepper noise characteristic of independent Monte Carlo estimates, while still retaining the many advantages of Monte Carlo solvers: progressive evaluation, trivial parallelization, geometric robustness, etc. We validate our approach using test problems from visual and geometric computing.

Funder

National Science Foundation

Alfred P. Sloan Research Fellowship

National Science Foundation Graduate Research Fellowship Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference35 articles.

1. Fast winding numbers for soups and clouds

2. The rate of convergence of the Walk on Spheres Algorithm

3. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting

4. Tony F Chan and Tarek P Mathew . 1994. Domain decomposition algorithms. Acta numerica 3 ( 1994 ), 61--143. Tony F Chan and Tarek P Mathew. 1994. Domain decomposition algorithms. Acta numerica 3 (1994), 61--143.

5. Symmetric boundary knot method

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3