Ray Tracing Harmonic Functions

Author:

Gillespie Mark1ORCID,Yang Denise23ORCID,Botsch Mario4ORCID,Crane Keenan1ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, United States of America

2. Pixar, Emeryville, United States of America

3. Carnegie Mellon University, Emeryville, United States of America

4. TU Dortmund University, Dortmund, Germany

Abstract

Sphere tracing is a fast and high-quality method for visualizing surfaces encoded by signed distance functions (SDFs). We introduce a similar method for a completely different class of surfaces encoded by harmonic functions , opening up rich new possibilities for visual computing. Our starting point is similar in spirit to sphere tracing: using conservative Harnack bounds on the growth of harmonic functions, we develop a Harnack tracing algorithm for visualizing level sets of harmonic functions, including those that are angle-valued and exhibit singularities. The method takes much larger steps than naïve ray marching, avoids numerical issues common to generic root finding methods and, like sphere tracing, needs only perform pointwise evaluation of the function at each step. For many use cases, the method is fast enough to run real time in a shader program. We use it to visualize smooth surfaces directly from point clouds (via Poisson surface reconstruction) or polygon soup (via generalized winding numbers) without linear solves or mesh extraction. We also use it to visualize nonplanar polygons (possibly with holes), surfaces from architectural geometry, mesh "exoskeletons", and key mathematical objects including knots, links, spherical harmonics, and Riemann surfaces. Finally we show that, at least in theory, Harnack tracing provides an alternative mechanism for visualizing arbitrary implicit surfaces.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference87 articles.

1. Emil Adiels, Mats Ander, and Chris JK Williams. 2022. The architectural application of shells whose boundaries subtend a constant solid angle. arXiv preprint (2022), 21 pages. https://arxiv.org/pdf/2212.05913.pdf

2. Some techniques for shading machine renderings of solids

3. Harmonic Function Theory

4. Fast Ray Tracing of Scale‐Invariant Integral Surfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3