Exploring the Risky Travel Area and Behavior of Car-hailing Service

Author:

Niu Hongting1ORCID,Zhu Hengshu2,Sun Ying3,Lu Xinjiang4,Sun Jing5,Zhao Zhiyuan1,Xiong Hui6,Lang Bo1

Affiliation:

1. State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

2. Baidu Talent Intelligence Center, Baidu Inc., Beijing, China

3. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),Institute of Computing Technology, CAS, Beijing, China

4. Business Intelligency Lab, Baidu Inc., Beijing, China

5. East China University of Political Science and Law, Shanghai, China

6. Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou, China

Abstract

Recent years have witnessed the rapid development of car-hailing services, which provide a convenient approach for connecting passengers and local drivers using their personal vehicles. At the same time, the concern on passenger safety has gradually emerged and attracted more and more attention. While car-hailing service providers have made considerable efforts on developing real-time trajectory tracking systems and alarm mechanisms, most of them only focus on providing rescue-supporting information rather than preventing potential crimes. Recently, the newly available large-scale car-hailing order data have provided an unparalleled chance for researchers to explore the risky travel area and behavior of car-hailing services, which can be used for building an intelligent crime early warning system. To this end, in this article, we propose a Risky Area and Risky Behavior Evaluation System (RARBEs) based on the real-world car-hailing order data. In RARBEs, we first mine massive multi-source urban data and train an effective area risk prediction model, which estimates area risk at the urban block level. Then, we propose a transverse and longitudinal double detection method, which estimates behavior risk based on two aspects, including fraud trajectory recognition and fraud patterns mining. In particular, we creatively propose a bipartite graph-based algorithm to model the implicit relationship between areas and behaviors, which collaboratively adjusts area risk and behavior risk estimation based on random walk regularization. Finally, extensive experiments on multi-source real-world urban data clearly validate the effectiveness and efficiency of our system.

Funder

State Key Laboratory of Software Development Environment

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3