Contextual Data Cleaning with Ontology Functional Dependencies

Author:

Zheng Zheng1,Zheng Longtao2,Alipourlangouri Morteza1,Chiang Fei1ORCID,Golab Lukasz3,Szlichta Jaroslaw4,Baskaran Sridevi1

Affiliation:

1. McMaster University, Ontario, Canada

2. University of Science and Technology of China, Hefei, Anhui, P.R.China

3. University of Waterloo, Waterloo, ON, Canada

4. Ontario Tech University, Oshawa, ON, Canada

Abstract

Functional Dependencies define attribute relationships based on syntactic equality, and when used in data cleaning, they erroneously label syntactically different but semantically equivalent values as errors. We explore dependency-based data cleaning with Ontology Functional Dependencies (OFDs), which express semantic attribute relationships such as synonyms defined by an ontology. We study the theoretical foundations of OFDs, including sound and complete axioms and a linear-time inference procedure. We then propose an algorithm for discovering OFDs (exact ones and ones that hold with some exceptions) from data that uses the axioms to prune the search space. Toward enabling OFDs as data quality rules in practice, we study the problem of finding minimal repairs to a relation and ontology with respect to a set of OFDs. We demonstrate the effectiveness of our techniques on real datasets and show that OFDs can significantly reduce the number of false positive errors in data cleaning techniques that rely on traditional Functional Dependencies.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Reference54 articles.

1. Ontobee. n.d. The Drug Ontology. Retrieved April 28 2022 from http://www.ontobee.org/ontology/DRON.

2. Kaggle. n.d. Data Science for Good: Kiva Crowdfunding.Retrieved April 28 2022 from https://www.kaggle.com/kiva/data-science-for-good-kiva-crowdfunding?select=loan_themes_by_region.csv.

3. NIH. 2016. Medical Ontology Research. Retrieved April 28 2022 from https://mor.nlm.nih.gov.

4. DFD

5. R. Agrawal H. Mannila R. Srikant H. Toivonen and A. Verkamo. 1996. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining U. M. Fayyad G. Piatetsky-Shapiro P. Smyth and R. Uthurusamy (Eds.). AAAI Press Menlo Park CA 307–328.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mining Keys for Graphs;Data & Knowledge Engineering;2024-03

2. RTClean: Context-aware Tabular Data Cleaning using Real-time OFDs;2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2023-03-13

3. Contextual Data Cleaning with Ontology Functional Dependencies;Journal of Data and Information Quality;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3