Inferring Social Strength from Spatiotemporal Data

Author:

Pham Huy1,Shahabi Cyrus1,Liu Yan1

Affiliation:

1. University of Southern California, Los Angeles, CA

Abstract

The advent of geolocation technologies has generated unprecedented rich datasets of people’s location information at a very high fidelity. These location datasets can be used to study human behavior; for example, social studies have shown that people who are seen together frequently at the same place and same time are most probably socially related. In this article, we are interested in inferring these social connections by analyzing people’s location information; this is useful in a variety of application domains, from sales and marketing to intelligence analysis. In particular, we propose an entropy-based model (EBM) that not only infers social connections but also estimates the strength of social connections by analyzing people’s co-occurrences in space and time. We examine two independent methods: diversity and weighted frequency , through which co-occurrences contribute to the strength of a social connection. In addition, we take the characteristics of each location into consideration in order to compensate for cases where only limited location information is available. We also study the role of location semantics in improving our computation of social strength. We develop a parallel implementation of our algorithm using MapReduce to create a scalable and efficient solution for online applications. We conducted extensive sets of experiments with real-world datasets including both people’s location data and their social connections, where we used the latter as the ground truth to verify the results of applying our approach to the former. We show that our approach is valid across different networks and outperforms the competitors.

Funder

NSF

USC Integrated Media Systems Center

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference53 articles.

1. Supporting anonymous location queries in mobile environments with privacygrid

2. Michael Barbaro Tom Zeller and Saul Hansell. 2006. A face is exposed for AOL searcher no. 4417749. New York Times 9 2008 (2006) 8For. Michael Barbaro Tom Zeller and Saul Hansell. 2006. A face is exposed for AOL searcher no. 4417749. New York Times 9 2008 (2006) 8For.

3. Multidimensional binary search trees used for associative searching

4. Inferring social ties in academic networks using short-range wireless communications

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3