Affiliation:
1. Dartmouth College, Computer Science, Hanover, NH, USA
2. Stanford University, Department of Communication, Stanford, CA, USA
3. University of Cambridge, Department of Psychology, Cambridge, United Kingdom
Abstract
Personality traits describe individual differences in patterns of thinking, feeling, and behaving ("between-person" variability). But individuals also show changes in their own patterns over time ("within-person" variability). Existing approaches to measuring within-person variability typically rely on self-report methods that do not account for fine-grained behavior change patterns (e.g., hour-by-hour). In this paper, we use passive sensing data from mobile phones to examine the extent to which within-person variability in behavioral patterns can predict self-reported personality traits. Data were collected from 646 college students who participated in a self-tracking assignment for 14 days. To measure variability in behavior, we focused on 5 sensed behaviors (ambient audio amplitude, exposure to human voice, physical activity, phone usage, and location data) and computed 4 within-person variability features (simple standard deviation, circadian rhythm, regularity index, and flexible regularity index). We identified a number of significant correlations between the within-person variability features and the self-reported personality traits. Finally, we designed a model to predict the personality traits from the within-person variability features. Our results show that we can predict personality traits with good accuracy. The resulting predictions correlate with self-reported personality traits in the range of r = 0.32, MAE = 0.45 (for Openness in iOS users) to r = 0.69, MAE = 0.55 (for Extraversion in Android users). Our results suggest that within-person variability features from smartphone data has potential for passive personality assessment.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献