Author:
Shi Keqin,Chen Zhen,Sun Weiqiang,Hu Weisheng
Abstract
AbstractRegularity is an important aspect of physical activity that can provide valuable insights into how individuals engage in physical activity over time. Accurate measurement of regularity not only advances our understanding of physical activity behavior but also facilitates the development of human activity modeling and forecasting. Furthermore, it can inform the design and implementation of tailored interventions to improve population health outcomes. In this paper, we aim to assess the regularity of physical activities through longitudinal sensor data, which reflects individuals’ all physical activities over an extended period. We explore three entropy models, including entropy rate, approximate entropy, and sample entropy, which can potentially offer a more comprehensive evaluation of physical activity regularity compared to metrics based solely on periodicity or stability. We propose a framework to validate the performance of entropy models on both synthesized and real-world physical activity data. The results indicate entropy rate is able to identify not only the magnitude and amount of noise but also macroscopic variations of physical activities, such as differences on duration and occurrence time. Simultaneously, entropy rate is highly correlated with the predictability of real-world samples, further highlighting its applicability in measuring human physical activity regularity. Leveraging entropy rate, we further investigate the regularity for 686 individuals. We find the composition of physical activities can partially explain the difference in regularity among individuals, and the majority of individuals exhibit temporal stability of regularity.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. WHO: Global Recommendations on Physical Activity for Health. https://www.who.int/news-room/fact-sheets/detail/physical-activity. Accessed 26 Sep 2022.
2. Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research-the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1.):135–46.
3. Goulet-Langlois G, Koutsopoulos HN, Zhao Z, Zhao J. Measuring regularity of individual travel patterns. IEEE Trans Intell Transp Syst. 2017;19(5):1583–92.
4. Monk TK, Flaherty JF, Frank E, Hoskinson K, Kupfer DJ. The social rhythm metric: an instrument to quantify the daily rhythms of life. J Nerv Ment Dis. 1990;
5. Monk TH, Frank E, Potts JM, Kupfer DJ. A simple way to measure daily lifestyle regularity. J Sleep Res. 2002;11(3):183–90.