Measuring regularity of human physical activities with entropy models

Author:

Shi Keqin,Chen Zhen,Sun Weiqiang,Hu Weisheng

Abstract

AbstractRegularity is an important aspect of physical activity that can provide valuable insights into how individuals engage in physical activity over time. Accurate measurement of regularity not only advances our understanding of physical activity behavior but also facilitates the development of human activity modeling and forecasting. Furthermore, it can inform the design and implementation of tailored interventions to improve population health outcomes. In this paper, we aim to assess the regularity of physical activities through longitudinal sensor data, which reflects individuals’ all physical activities over an extended period. We explore three entropy models, including entropy rate, approximate entropy, and sample entropy, which can potentially offer a more comprehensive evaluation of physical activity regularity compared to metrics based solely on periodicity or stability. We propose a framework to validate the performance of entropy models on both synthesized and real-world physical activity data. The results indicate entropy rate is able to identify not only the magnitude and amount of noise but also macroscopic variations of physical activities, such as differences on duration and occurrence time. Simultaneously, entropy rate is highly correlated with the predictability of real-world samples, further highlighting its applicability in measuring human physical activity regularity. Leveraging entropy rate, we further investigate the regularity for 686 individuals. We find the composition of physical activities can partially explain the difference in regularity among individuals, and the majority of individuals exhibit temporal stability of regularity.

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. WHO: Global Recommendations on Physical Activity for Health. https://www.who.int/news-room/fact-sheets/detail/physical-activity. Accessed 26 Sep 2022.

2. Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research-the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1.):135–46.

3. Goulet-Langlois G, Koutsopoulos HN, Zhao Z, Zhao J. Measuring regularity of individual travel patterns. IEEE Trans Intell Transp Syst. 2017;19(5):1583–92.

4. Monk TK, Flaherty JF, Frank E, Hoskinson K, Kupfer DJ. The social rhythm metric: an instrument to quantify the daily rhythms of life. J Nerv Ment Dis. 1990;

5. Monk TH, Frank E, Potts JM, Kupfer DJ. A simple way to measure daily lifestyle regularity. J Sleep Res. 2002;11(3):183–90.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3