SIMD defragmenter

Author:

Park Yongjun1,Seo Sangwon1,Park Hyunchul1,Cho Hyoun Kyu1,Mahlke Scott1

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

Abstract

Single-instruction multiple-data (SIMD) accelerators provide an energy-efficient platform to scale the performance of mobile systems while still retaining post-programmability. The central challenge is translating the parallel resources of the SIMD hardware into real application performance. In scientific applications, automatic vectorization techniques have proven quite effective at extracting large levels of data-level parallelism (DLP). However, vectorization is often much less effective for media applications due to low trip count loops, complex control flow, and non-uniform execution behavior. As a result, SIMD lanes remain idle due to insufficient DLP. To attack this problem, this paper proposes a new vectorization pass called SIMD Defragmenter to uncover hidden DLP that lurks below the surface in the form of instruction-level parallelism (ILP). The difficulty is managing the data packing/unpacking overhead that can easily exceed the benefits gained through SIMD execution. The SIMD degragmenter overcomes this problem by identifying groups of compatible instructions (subgraphs) that can be executed in parallel across the SIMD lanes. By SIMDizing in bulk at the subgraph level, packing/unpacking overhead is minimized. On a 16-lane SIMD processor, experimental results show that SIMD defragmentation achieves a mean 1.6x speedup over traditional loop vectorization and a 31% gain over prior research approaches for converting ILP to DLP.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Occamy: Elastically Sharing a SIMD Co-processor across Multiple CPU Cores;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

2. An SLP Vectorization Method Based on Equivalent Extended Transformation;Wireless Communications and Mobile Computing;2022-03-09

3. A Compiler Approach for Exploiting Partial SIMD Parallelism;ACM Transactions on Architecture and Code Optimization;2016-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3