A Compiler Approach for Exploiting Partial SIMD Parallelism

Author:

Zhou Hao1,Xue Jingling2

Affiliation:

1. UNSW Australia/NUDT, China

2. UNSW Australia, NSW, Australia

Abstract

Existing vectorization techniques are ineffective for loops that exhibit little loop-level parallelism but some limited superword-level parallelism (SLP). We show that effectively vectorizing such loops requires partial vector operations to be executed correctly and efficiently, where the degree of partial SIMD parallelism is smaller than the SIMD datapath width. We present a simple yet effective SLP compiler technique called P aver (PArtial VEctorizeR), formulated and implemented in LLVM as a generalization of the traditional SLP algorithm, to optimize such partially vectorizable loops. The key idea is to maximize SIMD utilization by widening vector instructions used while minimizing the overheads caused by memory access, packing/unpacking, and/or masking operations, without introducing new memory errors or new numeric exceptions. For a set of 9 C/C++/Fortran applications with partial SIMD parallelism, P aver achieves significantly better kernel and whole-program speedups than LLVM on both Intel’s AVX and ARM’s NEON.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Stencil Computation on Multi-core DSPs;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Boost Linear Algebra Computation Performance via Efficient VNNI Utilization;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

3. PresCount: Effective Register Allocation for Bank Conflict Reduction;2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2024-03-02

4. Occamy: Elastically Sharing a SIMD Co-processor across Multiple CPU Cores;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

5. High Performance and Power Efficient Accelerator for Cloud Inference;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3