Threesomes, with and without blame

Author:

Siek Jeremy G.1,Wadler Philip2

Affiliation:

1. University of Colorado at Boulder, Boulder, CO, USA

2. University of Edinburgh, Edinburgh, United Kingdom

Abstract

How to integrate static and dynamic types? Recent work focuses on casts to mediate between the two. However, adding casts may degrade tail calls into a non-tail calls, increasing space consumption from constant to linear in the depth of calls. We present a new solution to this old problem, based on the notion of a threesome. A cast is specified by a source and a target type--a twosome. Any twosome factors into a downcast from the source to an intermediate type, followed by an upcast from the intermediate to the target---a threesome. Any chain of threesomes collapses to a single threesome, calculated by taking the greatest lower bound of the intermediate types. We augment this solution with blame labels to map any failure of a threesome back to the offending twosome in the source program. Herman, Tomb, and Flanagan (2007) solve the space problem by representing casts with the coercion calculus of Henglein (1994). While they provide a theoretical limit on the space overhead, there remains the practical question of how best to implement coercion reduction. The threesomes presented in this paper provide a streamlined data structure and algorithm for representing and normalizing coercions. Furthermore, threesomes provide a typed-based explanation of coercion reduction.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gradualizing the Calculus of Inductive Constructions;ACM Transactions on Programming Languages and Systems;2022-04-06

2. Gradually structured data;Proceedings of the ACM on Programming Languages;2021-10-20

3. Blame and coercion: Together again for the first time;Journal of Functional Programming;2021

4. Parameterized cast calculi and reusable meta-theory for gradually typed lambda calculi;Journal of Functional Programming;2021

5. Space-Efficient Latent Contracts;Lecture Notes in Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3