Continuity analysis of programs

Author:

Chaudhuri Swarat1,Gulwani Sumit2,Lublinerman Roberto1

Affiliation:

1. Pennsylvania State University, University Park, PA, USA

2. Microsoft Research, Redmond, WA, USA

Abstract

We present an analysis to automatically determine if a program represents a continuous function, or equivalently, if infinitesimal changes to its inputs can only cause infinitesimal changes to its outputs. The analysis can be used to verify the robustness of programs whose inputs can have small amounts of error and uncertainty---e.g., embedded controllers processing slightly unreliable sensor data, or handheld devices using slightly stale satellite data. Continuity is a fundamental notion in mathematics. However, it is difficult to apply continuity proofs from real analysis to functions that are coded as imperative programs, especially when they use diverse data types and features such as assignments, branches, and loops. We associate data types with metric spaces as opposed to just sets of values, and continuity of typed programs is phrased in terms of these spaces. Our analysis reduces questions about continuity to verification conditions that do not refer to infinitesimal changes and can be discharged using off-the-shelf SMT solvers. Challenges arise in proving continuity of programs with branches and loops, as a small perturbation in the value of a variable often leads to divergent control-flow that can lead to large changes in values of variables. Our proof rules identify appropriate ``synchronization points'' between executions and their perturbed counterparts, and establish that values of certain variables converge back to the original results in spite of temporary divergence. We prove our analysis sound with respect to the traditional epsilon-delta definition of continuity. We demonstrate the precision of our analysis by applying it to a range of classic algorithms, including algorithms for array sorting, shortest paths in graphs, minimum spanning trees, and combinatorial optimization. A prototype implementation based on the Z3 SMT-solver is also presented.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Being Correct Is Not Enough: Efficient Verification Using Robust Linear Temporal Logic;ACM Transactions on Computational Logic;2022-01-14

2. Generalized derivatives of computer programs;Optimization Methods and Software;2020-07-26

3. Towards verified stochastic variational inference for probabilistic programs;Proceedings of the ACM on Programming Languages;2020-01

4. On the Versatility of Open Logical Relations;Programming Languages and Systems;2020

5. User equilibrium with a policy-based link transmission model for stochastic time-dependent traffic networks;Transportmetrica B: Transport Dynamics;2018-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3