Towards verified stochastic variational inference for probabilistic programs

Author:

Lee Wonyeol1,Yu Hangyeol1,Rival Xavier2,Yang Hongseok1

Affiliation:

1. KAIST, South Korea

2. Inria, France / ENS, France / CNRS, France / PSL University, France

Abstract

Probabilistic programming is the idea of writing models from statistics and machine learning using program notations and reasoning about these models using generic inference engines. Recently its combination with deep learning has been explored intensely, which led to the development of so called deep probabilistic programming languages, such as Pyro, Edward and ProbTorch. At the core of this development lie inference engines based on stochastic variational inference algorithms. When asked to find information about the posterior distribution of a model written in such a language, these algorithms convert this posterior-inference query into an optimisation problem and solve it approximately by a form of gradient ascent or descent. In this paper, we analyse one of the most fundamental and versatile variational inference algorithms, called score estimator or REINFORCE, using tools from denotational semantics and program analysis. We formally express what this algorithm does on models denoted by programs, and expose implicit assumptions made by the algorithm on the models. The violation of these assumptions may lead to an undefined optimisation objective or the loss of convergence guarantee of the optimisation process. We then describe rules for proving these assumptions, which can be automated by static program analyses. Some of our rules use nontrivial facts from continuous mathematics, and let us replace requirements about integrals in the assumptions, such as integrability of functions defined in terms of programs' denotations, by conditions involving differentiation or boundedness, which are much easier to prove automatically (and manually). Following our general methodology, we have developed a static program analysis for the Pyro programming language that aims at discharging the assumption about what we call model-guide support match. Our analysis is applied to the eight representative model-guide pairs from the Pyro webpage, which include sophisticated neural network models such as AIR. It finds a bug in one of these cases, reveals a non-standard use of an inference engine in another, and shows that the assumptions are met in the remaining six cases.

Funder

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference68 articles.

1. Pyro: Deep Universal Probabilistic Programming;Bingham Eli;Journal of Machine Learning Research,2019

2. A lambda-calculus foundation for universal probabilistic programming

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Programming with Programmable Variational Inference;Proceedings of the ACM on Programming Languages;2024-06-20

2. Static Posterior Inference of Bayesian Probabilistic Programming via Polynomial Solving;Proceedings of the ACM on Programming Languages;2024-06-20

3. Differentiable Quantum Programming with Unbounded Loops;ACM Transactions on Software Engineering and Methodology;2023-11-23

4. Probabilistic Programming with Stochastic Probabilities;Proceedings of the ACM on Programming Languages;2023-06-06

5. Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference;Proceedings of the ACM on Programming Languages;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3