Affiliation:
1. College of Computer, National University of Defense Technology, China
2. Information Center, National University of Defense Technology, China
Abstract
Knowledge Tracing (KT) is the task of modeling a learner’s knowledge state to predict future performance in e-learning systems based on past performance. Deep learning-based methods, such as recurrent neural networks, memory-augmented neural networks, and attention-based neural networks, have recently been used in KT. Such methods have demonstrated excellent performance in capturing the latent dependencies of a learner’s knowledge state on recent exercises. However, these methods have limitations when it comes to dealing with the so-called Skill Switching Phenomenon (SSP), i.e., when learners respond to exercises in an e-learning system, the latent skills in the exercises typically switch irregularly. SSP will deteriorate the performance of deep learning-based approaches for simulating the learner’s knowledge state during skill switching, particularly when the association between the switching skills and the previously learned skills is weak. To address this problem, we propose the Memory-augmented Attentive Network (MAN), which combines the advantages of memory-augmented neural networks and attention-based neural networks. Specifically, in MAN, memory-augmented neural networks are used to model learners’ longer term memory knowledge, while attention-based neural networks are used to model learners’ recent term knowledge. In addition, we design a context-aware attention mechanism that automatically weighs the tradeoff between these two types of knowledge. With extensive experiments on several e-learning datasets, we show that MAN effectively improve predictive accuracies of existing state-of-the-art DLKT methods.
Funder
National Key Research and Development Project of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Knowledge ontology enhanced model for explainable knowledge tracing;Journal of King Saud University - Computer and Information Sciences;2024-06