MAN: Memory-augmented Attentive Networks for Deep Learning-based Knowledge Tracing

Author:

He Liangliang1ORCID,Li Xiao2ORCID,Wang Pancheng1ORCID,Tang Jintao1ORCID,Wang Ting1ORCID

Affiliation:

1. College of Computer, National University of Defense Technology, China

2. Information Center, National University of Defense Technology, China

Abstract

Knowledge Tracing (KT) is the task of modeling a learner’s knowledge state to predict future performance in e-learning systems based on past performance. Deep learning-based methods, such as recurrent neural networks, memory-augmented neural networks, and attention-based neural networks, have recently been used in KT. Such methods have demonstrated excellent performance in capturing the latent dependencies of a learner’s knowledge state on recent exercises. However, these methods have limitations when it comes to dealing with the so-called Skill Switching Phenomenon (SSP), i.e., when learners respond to exercises in an e-learning system, the latent skills in the exercises typically switch irregularly. SSP will deteriorate the performance of deep learning-based approaches for simulating the learner’s knowledge state during skill switching, particularly when the association between the switching skills and the previously learned skills is weak. To address this problem, we propose the Memory-augmented Attentive Network (MAN), which combines the advantages of memory-augmented neural networks and attention-based neural networks. Specifically, in MAN, memory-augmented neural networks are used to model learners’ longer term memory knowledge, while attention-based neural networks are used to model learners’ recent term knowledge. In addition, we design a context-aware attention mechanism that automatically weighs the tradeoff between these two types of knowledge. With extensive experiments on several e-learning datasets, we show that MAN effectively improve predictive accuracies of existing state-of-the-art DLKT methods.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge ontology enhanced model for explainable knowledge tracing;Journal of King Saud University - Computer and Information Sciences;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3