Low-Power Heterogeneous Graphene Nanoribbon-CMOS Multistate Volatile Memory Circuit

Author:

Khasanvis Santosh1,Habib K. M. Masum2,Rahman Mostafizur1,Lake Roger2,Moritz Csaba Andras1

Affiliation:

1. University of Massachusetts Amherst, Amherst, MA

2. University of California Riverside, Riverside, CA

Abstract

Graphene is an emerging nanomaterial believed to be a potential candidate for post-Si nanoelectronics due to its exotic properties. Recently, a new graphene nanoribbon crossbar (xGNR) device was proposed which exhibits negative differential resistance (NDR). In this article, a multistate memory design is presented that can store multiple bits in a single cell enabled by this xGNR device, called graphene nanoribbon tunneling random access memory (GNTRAM). An approach to increase the number of bits per cell is explored alternative to physical scaling to overcome CMOS SRAM limitations. A comprehensive design for quaternary GNTRAM is presented as a baseline, implemented with a heterogeneous integration between graphene and CMOS. Sources of leakage and approaches to mitigate them are investigated. This design is extensively benchmarked against 16nm CMOS SRAMs and 3T DRAM. The proposed quaternary cell shows up to 2.27× density benefit versus 16nm CMOS SRAMs and 1.8× versus 3T DRAM. It has comparable read performance and is power efficient up to 1.32× during active period and 818× during standby against high-performance SRAMs. Multistate GNTRAM has the potential to realize high-density low-power nanoscale embedded memories. Further improvements may be possible by using graphene more extensively, as graphene transistors become available in the future.

Funder

Center for Hierarchical Manufacturing (CHM) at UMass Amherst

Focus Center Research Program (FCRP) Center on Functionally Engineering Nano Architectonics

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3