Optimizing Bit-Serial Matrix Multiplication for Reconfigurable Computing

Author:

Umuroglu Yaman1,Conficconi Davide2ORCID,Rasnayake Lahiru3,Preusser Thomas B.4,Själander Magnus5ORCID

Affiliation:

1. Xilinx Research Labs, Dublin, Ireland

2. Xilinx Research Labs, Ireland and Politecnico di Milano, Milano, Italy

3. Norwegian University of Science and Technology, Trondheim, Norway

4. Accemic Technologies GmbH, Dresden, Germany

5. Uppsala University, Sweden and Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Matrix-matrix multiplication is a key computational kernel for numerous applications in science and engineering, with ample parallelism and data locality that lends itself well to high-performance implementations. Many matrix multiplication-dependent applications can use reduced-precision integer or fixed-point representations to increase their performance and energy efficiency while still offering adequate quality of results. However, precision requirements may vary between different application phases or depend on input data, rendering constant-precision solutions ineffective. BISMO, a vectorized bit-serial matrix multiplication overlay for reconfigurable computing, previously utilized the excellent binary-operation performance of FPGAs to offer a matrix multiplication performance that scales with required precision and parallelism. We show how BISMO can be scaled up on Xilinx FPGAs using an arithmetic architecture that better utilizes six-input LUTs. The improved BISMO achieves a peak performance of 15.4 binary TOPS on the Ultra96 board with a Xilinx UltraScale+ MPSoC.

Funder

Vetenskapsrådet

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference25 articles.

1. AVNET. 2018. ULTRA96. Retrieved from http://www.ultra96.org/sites/default/files/product_briefs/5354-pb-ultra96-v3b.pdf. AVNET. 2018. ULTRA96. Retrieved from http://www.ultra96.org/sites/default/files/product_briefs/5354-pb-ultra96-v3b.pdf.

2. A Customizable Matrix Multiplication Framework for the Intel HARPv2 Xeon+FPGA Platform

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-efficiency Compressor Trees for Latest AMD FPGAs;ACM Transactions on Reconfigurable Technology and Systems;2024-04-30

2. Dynamic Multi-bit Parallel Computing Method Based on Reconfigurable Structure;Lecture Notes in Computer Science;2024

3. BISDU: A Bit-Serial Dot-Product Unit for Microcontrollers;ACM Transactions on Embedded Computing Systems;2023-09-26

4. Co-designing an FPGA-Accelerated Encryption Library With PYNQ: The Pynqrypt Case Study;IEEE EUROCON 2023 - 20th International Conference on Smart Technologies;2023-07-06

5. Booth Encoded Bit-Serial Multiply-Accumulate Units with Improved Area and Energy Efficiencies;Electronics;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3