Affiliation:
1. Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Abstract
Traditionally, capsule wardrobes are manually designed by expert fashionistas through their creativity and technical prowess. The goal is to curate minimal fashion items that can be assembled into several compatible and versatile outfits. It is usually a cost and time intensive process, and hence lacks scalability. Although there are a few approaches that attempt to automate the process, they tend to ignore the price of items or shopping budget. In this article, we formulate this task as a multi-objective budget constrained capsule wardrobe recommendation (
MOBCCWR
) problem. It is modeled as a bipartite graph having two disjoint vertex sets corresponding to top-wear and bottom-wear items, respectively. An edge represents compatibility between the corresponding item pairs. The objective is to find a 1-neighbor subset of fashion items as a capsule wardrobe that jointly maximize compatibility and versatility scores by considering corresponding user-specified preference weight coefficients and an overall shopping budget as a means of achieving personalization. We study the complexity class of
MOBCCWR
, show that it is NP-Complete, and propose a greedy algorithm for finding a near-optimal solution in real time. We also analyze the time complexity and approximation bound for our algorithm. Experimental results show the effectiveness of the proposed approach on both real and synthetic datasets.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献