A Graph Theoretic Approach for Multi-Objective Budget Constrained Capsule Wardrobe Recommendation

Author:

Patil Shubham1,Banerjee Debopriyo1ORCID,Sural Shamik1ORCID

Affiliation:

1. Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Abstract

Traditionally, capsule wardrobes are manually designed by expert fashionistas through their creativity and technical prowess. The goal is to curate minimal fashion items that can be assembled into several compatible and versatile outfits. It is usually a cost and time intensive process, and hence lacks scalability. Although there are a few approaches that attempt to automate the process, they tend to ignore the price of items or shopping budget. In this article, we formulate this task as a multi-objective budget constrained capsule wardrobe recommendation ( MOBCCWR ) problem. It is modeled as a bipartite graph having two disjoint vertex sets corresponding to top-wear and bottom-wear items, respectively. An edge represents compatibility between the corresponding item pairs. The objective is to find a 1-neighbor subset of fashion items as a capsule wardrobe that jointly maximize compatibility and versatility scores by considering corresponding user-specified preference weight coefficients and an overall shopping budget as a means of achieving personalization. We study the complexity class of MOBCCWR , show that it is NP-Complete, and propose a greedy algorithm for finding a near-optimal solution in real time. We also analyze the time complexity and approximation bound for our algorithm. Experimental results show the effectiveness of the proposed approach on both real and synthetic datasets.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactive construction of personalized fashion capsule wardrobes with alternative item recommendations;2024 7th International Conference on Information and Computer Technologies (ICICT);2024-03-15

2. Community Preserving Social Recommendation with Cyclic Transfer Learning;ACM Transactions on Information Systems;2023-12-29

3. Multi-objective reinforcement learning approach for trip recommendation;Expert Systems with Applications;2023-09

4. An extension of optimal fashion capsule wardrobe construction by considering visual dissimilarity and number of good coordinates;2022 Tenth International Symposium on Computing and Networking Workshops (CANDARW);2022-11

5. Causality Analysis: The study of Size and Power based on riz-PC Algorithm of Graph Theoretic Approach;Technological Forecasting and Social Change;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3