Efficient Scheduling of Generalized Group Trips in Road Networks

Author:

Rayhan Yeasir1,Hashem Tanzima1ORCID,Jahan Roksana1,Cheema Muhammad Aamir2

Affiliation:

1. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

2. Monash University, Clayton, VIC, Australia

Abstract

In this article, we introduce generalized group trip scheduling (GGTS) queries that enable friends and families to perform activities at different points of interest (POIs), such as a shopping center, a restaurant and a pharmacy with the minimum total travel distance. Trip planning and scheduling for groups, an important class of location-based services (LBSs), have recently received attention from researchers. However, both group trip planning (GTP) and group trip scheduling (GTS) queries have restrictions: a GTP query assumes that all group members visit all required POIs together, whereas a GTS query requires that each POI is visited by a single group member. A GGTS query is more general and allows any number of group members to visit a POI together. We propose an efficient algorithm to evaluate the exact answers for GGTS queries in road networks. Since finding the answer for a GGTS query is an NP-hard problem, to reduce the processing overhead for a large group size or a large number of required POI types or a large POI dataset, we propose two heuristic solutions—trip-scheduling heuristic (TSH) and search region refinement heuristic (SRH)—for processing GGTS queries. Extensive experiments with real datasets show that our optimal algorithm is preferable for small parameter settings, and the heuristic solutions reduce the processing overhead significantly in return for sacrificing the accuracy slightly.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AIST: An Interpretable Attention-Based Deep Learning Model for Crime Prediction;ACM Transactions on Spatial Algorithms and Systems;2023-04-12

2. Strategies for Alternate Group Trip Planning Queries in Location-Based Services;Advances in Intelligent Systems and Computing;2020-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3