AIST: An Interpretable Attention-Based Deep Learning Model for Crime Prediction

Author:

Rayhan Yeasir1ORCID,Hashem Tanzima1ORCID

Affiliation:

1. Bangladesh University of Engineering and Technology, West Palashi, Dhaka, Bangladesh

Abstract

Accuracy and interpretability are two essential properties for a crime prediction model. Accurate prediction of future crime occurrences along with the reason behind a prediction would allow us to plan the crime prevention steps accordingly. The key challenge in developing the model is to capture the non-linear and dynamic spatial dependency and temporal patterns of a specific crime category, while keeping the underlying structure of the model interpretable. In this article, we develop AIST, an A ttention-based I nterpretable S patio T emporal Network for crime prediction. AIST models the dynamic spatio-temporal correlations for a crime category based on past crime occurrences, external features (e.g., traffic flow and point of interest information) and recurring trends of crime. Extensive experiments show that AIST outperforms the state-of-the-art techniques in terms of accuracy (e.g., AIST shows a decrease of 4.1% on mean average error and 7.45% on mean square error for the Chicago 2019 crime dataset) and interpretability. 1

Funder

ICT Division, Bangladesh

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Reference92 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3