Idle sense

Author:

Heusse Martin1,Rousseau Franck1,Guillier Romaric1,Duda Andrzej1

Affiliation:

1. LSR-IMAG Laboratory, Grenoble, France

Abstract

We consider wireless LANs such as IEEE 802.11 operating in the unlicensed radio spectrum. While their nominal bit rates have increased considerably, the MAC layer remains practically unchanged despite much research effort spent on improving its performance. We observe that most proposals for tuning the access method focus on a single aspect and disregard others. Our objective is to define an access method optimized for throughput and fairness, able to dynamically adapt to physical channel conditions, to operate near optimum for a wide range of error rates, and to provide equal time shares when hosts use different bit rates.We propose a novel access method derived from 802.11 DCF [2] ( Distributed Coordination Function ) in which all hosts use similar values of the contention window CW to benefit from good short-term access fairness. We call our method Idle Sense , because each host observes the mean number of idle slots between transmission attempts to dynamically control its contention window. Unlike other proposals, Idle Sense enables each host to estimate its frame error rate, which can be used for switching to the right bit rate. We present simulations showing how the method leads to high throughput, low collision overhead, and low delay. The method also features fast reactivity and time-fair channel allocation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference28 articles.

1. Link-level measurements from an 802.11b mesh network

2. ANSI/IEEE. 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 2003. ANSI/IEEE. 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 2003.

3. MACAW

4. Fairness and its impact on delay in 802.11 networks

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3