Cache-Centric Video Recommendation

Author:

Krishnappa Dilip Kumar1,Zink Michael1,Griwodz Carsten2,Halvorsen Pål2

Affiliation:

1. University of Massachusetts Amherst

2. Simula Laboratory, University of Oslo, Norway

Abstract

In this article, we take advantage of the user behavior of requesting videos from the top of the related list provided by YouTube to improve the performance of YouTube caches. We recommend that local caches reorder the related lists associated with YouTube videos, presenting the cached content above noncached content. We argue that the likelihood that viewers select content from the top of the related list is higher than selection from the bottom, and pushing contents already in the cache to the top of the related list would increase the likelihood of choosing cached content. To verify that the position on the list really is the selection criterion more dominant than the content itself, we conduct a user study with 40 YouTube-using volunteers who were presented with random related lists in their everyday YouTube use. After confirming our assumption, we analyze the benefits of our approach by an investigation that is based on two traces collected from a university campus. Our analysis shows that the proposed reordering approach for related lists would lead to a 2 to 5 times increase in cache hit rate compared to an approach without reordering the related list. This increase in hit rate would lead to reduction in server load and backend bandwidth usage, which in turn reduces the latency in streaming the video requested by the viewer and has the potential to improve the overall performance of YouTube's content distribution system. An analysis of YouTube's recommendation system reveals that related lists are created from a small pool of videos, which increases the potential for caching content from related lists and reordering based on the content in the cache.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference33 articles.

1. Vivisecting YouTube: An active measurement study

2. Where do you “Tube;Adhikari V. K.;In Proceedings of the 20th IEEE ICCCN. IEEE, 1--6. DOI:http://dx.doi.org/10.1109/ICCCN.,2011

3. Movie recommender system for profit maximization

4. I tube, you tube, everybody tubes

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3